Extensions 1→N→G→Q→1 with N=D38 and Q=C22

Direct product G=N×Q with N=D38 and Q=C22
dρLabelID
C23×D19152C2^3xD19304,41

Semidirect products G=N:Q with N=D38 and Q=C22
extensionφ:Q→Out NdρLabelID
D381C22 = C2×D76φ: C22/C2C2 ⊆ Out D38152D38:1C2^2304,29
D382C22 = D4×D19φ: C22/C2C2 ⊆ Out D38764+D38:2C2^2304,31
D383C22 = C2×C19⋊D4φ: C22/C2C2 ⊆ Out D38152D38:3C2^2304,36

Non-split extensions G=N.Q with N=D38 and Q=C22
extensionφ:Q→Out NdρLabelID
D38.1C22 = D765C2φ: C22/C2C2 ⊆ Out D381522D38.1C2^2304,30
D38.2C22 = D42D19φ: C22/C2C2 ⊆ Out D381524-D38.2C2^2304,32
D38.3C22 = D76⋊C2φ: C22/C2C2 ⊆ Out D381524+D38.3C2^2304,34
D38.4C22 = C2×C4×D19φ: trivial image152D38.4C2^2304,28
D38.5C22 = Q8×D19φ: trivial image1524-D38.5C2^2304,33

׿
×
𝔽